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Passive immunization with antibodies has been shown to prevent a wide variety of
diseases. Recent advances in monoclonal antibody technology are enabling the
development of new methods for passive immunization of mucosal surfaces. Human
monoclonal antibodies, produced rapidly, inexpensively, and in large quantities, may
help prevent respiratory, diarrheal, and sexually transmitted diseases on a public

health scale.

In 1975, Kohler and Milstein noted that
monoclonal antibodies (MAbs) “...could be
valuable for medical and industrial use” (1).
Since then, the use of MAbs has become routine
in the research and diagnostic laboratory, but
antibodies have yet to be used to their maximum
potential in medical and public health applica-
tions. Two recent reviews of the therapeutic use
of antibodies suggest that systemically adminis-
tered antibodies may play an important role in
treating infections by drug-resistant pathogens
as well as pathogens for which no antimicrobial
drugs are available (2,3). However, the greatest
potential for MAbs probably lies in prevention
since antibodies are in general more effective for
prophylaxis than for therapy (3,4). From a public
health perspective, prevention is especially
important (5). In particular, direct application of
MAbs to mucosal surfaces blocks the entry of
pathogens into the body.

We review here the evidence of antibody
efficacy in preventing disease and recent
advances that have facilitated the development
of MAbs for mucosal applications in humans.
Finally, we consider the public health potential
of topical delivery of MAbs for preventing
mucosal transmission of infections.
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Immunologic Strategies for Preventing
Mucosal Transmission

Vaccines that stimulate systemic immunity
can prevent systemic disease, but generally fail
to prevent mucosal disease. Vaccines that
stimulate active mucosal immunity have
demonstrated good efficacy in animal models,
but with few exceptions (polio and influenza
vaccines), have not been as effective as they
could be in humans. Some of the discrepancies
between study results in animals and humans
are probably due to a failure of studies in animals
to model immune evasion strategies of pathogens
(6) that occur in humans. These strategies
include rapid evolution of variable strains (7),
pathogens that coat themselves with host
antigens (8), and pathogens that are transmitted
to a new host by hiding inside cells shed by the
infected host (cell vectors) (9). Furthermore,
most vaccines successful in stimulating mucosal
immunity in animals contain irritating adju-
vants or attenuated pathogens, which are
generally considered unacceptable for use in
humans; vaccines with human-safe adjuvants
have not generated high concentrations of
protective antibody in the mucosa. Current
research is investigating improved immunogens,
delivery vehicles, and adjuvants, as well as
exploring the best inductive sites for generating
a protective mucosal immune response at a
specific mucosal surface (10).

In contrast to vaccines, passive immuniza-
tions can deliver protective levels of antibodies
immediately and directly to the susceptible
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mucosal surface (Figure 1-top). Also, with
passive mucosal immunization, it may be
possible to defeat some key immune evasion
strategies by using antibodies directed against
host cell vectors, host antigens that coat the
pathogen, or receptors used by pathogens to
enter target cells (11). In addition, new methods
for the sustained release of antibodies offer the
possibility of long-term protection (12).
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Figure 1. Topical delivery of pathogen-specific MAbs
can protect the mucosal epithelium. (Top) Protective
MADbs (in this figure, secretory immunoglobulin A;
SIgA) can be topically applied to the mucosa in
various ways. (Bottom) In mucus, MAbs are believed
to act by a number of mechanisms to prevent
penetration of the mucous layer and subsequent
infection of target cells (62). MAbs can trap pathogens
in the mucous gel by forming low affinity bonds with
mucin fibers and can agglutinate pathogens into
clusters too large to diffuse through the mucous gel.

Efficacy of Antibodies in Preventing
Disease

The first use of immune serum for
preventing disease by passive immunization was
reported more than 100 years ago by von Behring
and Kitasato (13). Subsequently, systemic
passive immunization with antibodies has been
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proven effective in preventing many diseases. By
binding to a pathogen, systemically delivered
antibodies can inhibit attachment to and fusion
with target cells, inhibit internalization by
target cells, inhibit uncoating inside a cell,
aggregate pathogens thereby preventing them
from reaching target cells, interact with
complement to lyse the pathogen, induce
phagocytosis of the pathogen, and cause killer
cells to lyse the pathogen by antibody-dependent
cellular cytotoxicity (14). Table 1 lists the highest
efficacy reported for systemically delivered
antibodies in preventing disease in mammalian
species and against a wide range of pathogens
that infect humans. No antiviral treatments are
available for most viruses listed in the table, yet
antibodies can prevent the diseases caused by all
of these viruses.

Although less studied than systemic passive
immunization, the prophylactic use of mucosal
antibodies predates the therapeutic use of
immune sera. Antibodies delivered in mother’s
milk have been protecting the gastrointestinal
tract of nursing infants since the mammary
gland first evolved approximately 50 million
years ago. Most infections begin in mucosal
surfaces (approximately 400 m? in an adult
human); supplementing the antibody repertoire
in a mucous secretion (Figure 1-top) thus offers
an effective method for protecting a mucosal
surface against pathogens to which the host has
not been exposed or become immune. In addition
to the protective mechanisms described above,
antibodies delivered to mucosal surfaces can trap
pathogens in the mucous gel, make them
mucophilic, and prevent their diffusion and
motility (Figure 1-bottom); as a result, pathogens
trapped in mucus are shed from the body with
the normal flow of mucous secretions or are
digested if these secretions enter the digestive
tract (61-63). Topical passive immunization of
mucosa can block transmission of bacteria,
viruses, fungi, and parasites that infect
humans (Table 2).

The predominant (and perhaps the most
appropriate for mucosal delivery) antibody
isotype on most human mucosal surfaces is
secretory immunoglobulin A (SIgA); efficient
methods for producing SIgA have been reported
(82,83). SIgA, a tetravalent dimer of monomeric
IgA associated with two polypeptides (joining
chain and secretory component), is especially
stable and well suited to function in the
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Table 1. Examples of highly effective systemic passive
immunization

Table 2: Examples of highly effective topical passive
immunization of mucosa

Pre-
ven-
Spe- Anti- tion
Pathogen cies® body” (%) DRS¢ Ref.
Viruses
Chikungunya mou p 100 (15)
Cytomegalovirus hum »p 50 X (16)
Dengue mou p 100 an
Ebola bab P 80 (18)
Hantavirus mou m 100 (19)
Herpes simplex (genita) mou m 100 X (20)
(ocular) mou m 100 (21)
HIV mou m 100 X (22)
Hepatitis A hum p 90 (23)
Hepatitis B hum p 92 (24)
Influenza mou m 100 (25)
Lassa mon p 100 (26)
Measles mou m 100 @7
Polio hum p 58 (28)
Rabies mou m 100 (29)
Reovirus mou m 100 (30)
Rift Valley fever ham p 100 31)
Respiratory syncytial hum m 100 (32)
p 40 (33)
Rubella hum p 57 (34)
Varicella zoster hum p 100 (35)
Venezuelan equine mou p 100 (36)
encephalomyelitis
Bacteria
Borrelia burgdorfert ham p 100 37
Bordetella pertussis mou m 100 X (38)
Chlamydia pneumoniae mou p 100 39)
Chl. trachomatis mou m 90 (40)
Escherichia coli rat m 100 X (41)
Francisella tularensis mou p 100 (42)
Group B Streptococcus mou m 100 X (43)
Haemophilus influenzae rat P 100 X (44)
Mycoplasma pneumoniae ham p 80 (45)
Neisseria meningitis mou m 90 X (46)
Proteus mirabilis mou m 100 X (47)
Pseudomonas aeruginosa mou  p 100 X (48
Salmonella Typhimurium mou p 100 X (49
Shigella flexneri rab P 100 X (50)
Staphylococcus aureus rab m 100 X (51)
Streptococcus pneumoniae mou  p 90 X (52
Treponema pallidum ham p 100 (53)
Yersinia pestis mou p 100 (54)
m NR¢ (55)
Fungi
Candida albicans mou p >67 X (56)
Cryptococcus neoformans mou m 70 X (57
Parasites
Plasmodium falciparum mon p 75 X (58)
Toxoplasma gondii mou m 100 (59)
aSpecies: mou=mouse; hum=human; bab=baboon;

mon=monkey; ham=hamster; rat=rat; rab=rabbit.
bAntibody: m=monoclonal; p=polyclonal.
‘DRS=Drug-resistant strains reported (from Ref. 60).
dNR = not reported

Emerging Infectious Diseases

Pre-
Spe- Anti- ven-
Pathogen cies® RouteP body® tion Ref.
Viruses
Herpes simplex mou v m 100% (64,65)
r m 100% (66)
Influenza fer 0 p 100% (67)
mou n p >44  (68)
Rotavirus hum o P 100% (69, 70)
Respiratory mon n m 344 (71)
syncytial
Bacteria
Chlamydia mou Vv m 90% (72)
trachomatis
Clostridium ham o P 100% (73)
difficule
Escherichia coli hum o P 100% (74)
Porphyromonas hum o m 100% (75)
gingivalis

Shigella flexneri hum o P 100% (76)
Staphylococcus mou n P 3-4¢  (77)
aureus
Streptococcus
mutans
Vibrio cholerae mou o m

hum o m 100% (78)

100% (79)

Fungi
Candida albicans mou v p >50f (80)

Parasites
Cryptosporidium mou o m 77 (81)
parvum
aSpecies tested in: mou=mouse; fer=ferret; hum=human;
mon=monkey; ham=hamster.
bDelivery route of pathogen and antibody: v=vaginal; r=rectal;
o=oral; n=nasal.
¢Antibody: m=monoclonal; p=polyclonal.
d log,, reduction in virus titer.
¢log,, reduction in cfu.
f94 reduction in cfu.
8 % reduction in number of parasites.

enzymatically hostile environment that prevails
at mucosal surfaces (84). SIgA, the least
phlogistic class of antibody (84), is the least likely
to induce inflammatory responses that can make
it easier for toxins and pathogens to breach the
mucosal surface. Immune exclusion of antigens,
enzymes, and toxins has been repeatedly
demonstrated in vivo, and protection generally
correlates with levels of SIgA antibodies in the
relevant mucous secretions. Finally, the protec-
tive role of SIgA has been demonstrated in many
systems (85).
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Recent Advances in mAb Technology

Generating High-Affinity Human MAbs

Since the advent of cloning of human
antibodies from combinatorial libraries con-
structed from seropositive persons (86,87),
generation of fully human MAbs against human
pathogens has become routine (Figure 2) (88).
For example, from a single bone marrow donor,
human MAbs were prepared against HIV,
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Figure 2. Generation of human monoclonal antibod-
ies. (Phage display) Heavy and light chain ¢cDNA
isolated from human B-cells is used to generate a
combinatorial library in which random heavy (H) and
light chain (L) pairings are expressed on the surface
of phage. These phage can then be screened for
antigen binding by traditional techniques (e.g.,
ELISA). Since only the antigen binding region is used
in the phage display process, the selected clone is
then placed into an appropriate expression vector to
produce a full antibody molecule.(Transgenics)
Genetically manipulated mice have been produced
with inactivated endogenous immunoglobulin genes,
and with unrearranged human immunoglobulin gene
segments introduced (90,91). These mice are then
immunized with antigen, and hybridomas are
produced by traditional routes. (See refs. 88, 89 for
more technical information on these two methods and
refs. 92, 93 for comparisons of these two methods).
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respiratory syncytial virus (RSV), cytomegalovi-
rus, herpes simplex virus types 1 and 2, varicella
zoster virus, and rubella virus (88). MAbs can
even be obtained from naive libraries prepared
from unexposed persons (if the library has a
large enough repertoire) (89); therefore, antibod-
ies against pathogens lethal to humans can be
generated. Alternatively, human MAbs can be
generated by traditional immunization of commer-
cially available mice that have been genetically
engineered to contain human immunoglobulin
loci in their germline (Figure 2) (90,91).

Dramatic enhancement of the affinity of an
mAb has been demonstrated by molecular
biologic techniques in which mutants of an
antibody are generated and then screened for
higher affinity or higher neutralization activity
(93-95). For example, the affinity of one anti-HIV
mAb has been enhanced 420-fold, and this
matured antibody neutralizes more HIV strains
than the original mAb (94). Furthermore,
expressing a mAb as a multivalent isotype, such
as SIgA or IgM, can dramatically enhance the
potency of an antibody by increasing the avidity
(96) or agglutination activity (14). For example,
an anti-Escherichia coli IgM was 1,000-fold more
effective in protecting neonatal rats than its
class-switched IgG (both in vitro and in vivo)(41).
From a commercial standpoint, a 1,000-fold
increase in avidity could translate into a 1,000-fold
decrease in dose and subsequent cost. Also, a
large dose of a highly potent mAb can substantially
increase the duration of protection (97).

Production Systems

MADbs have traditionally been produced in
cell culture and have been prohibitively
expensive for most preventive uses. Over the
years, however, the cost has continually
dropped; MAbs are now being produced in cell
culture for $200 to $1,000 per gram (98,99).
Production of MAbs has recently been reported
in both transgenic plants and animals
(82,100,101). Both of these systems are expected
to lower costs dramatically. Indeed, transgenic
plants can be scaled up in agricultural fields to
produce tons of “plantibody,” and plant-produced
antibody is predicted to cost less than U.S. $1/g
(102). The actual cost, however, will remain
unknown until large-scale batches are produced,
purified, and formulated in accordance with
Good Manufacturing Practices.
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Safety and Regulatory Status

More than 80 MAbs are now in clinical trials
(most for cancer imaging or therapy) and more
than one quarter of these are in phase III trials
(103). Few safety problems have been reported
for systemic applications; antibodies are now
considered “biotechnology-derived pharmaceuti-
cals” by the U.S. Food and Drug Administration
(FDA)—enabling a more straightforward regula-
tory process than in the past (92,104). Even
though MAbs have often been evaluated for
systemic applications, only recently have they
been evaluated in humans for mucosal
applications. This new interest in mucosal
antibodies may be partially due to the increasing
recognition of the importance of mucosal
immunity. Only two clinical trials have
evaluated topically delivered MAbs: intranasally
delivered anti-RSV in infants at high risk (105)
and orally delivered anti-Streptococcus mutans
in adults (106); no major adverse effects were
reported in these studies.

Safety concerns, such as peptide and
glycosylation immunogenicity, are important
when MAbs are delivered systemically but are
likely to be of less concern when MAbs are
applied to the mucosa, a surface that has evolved
to interact with the external environment.
Indeed, antibodies delivered to the lumen of a
mucosal surface have minimal interaction with
circulating immune cells. Although proteins,
and even antibodies, can be absorbed through
mucosal surfaces (107,108), generally only small
quantities are absorbed (109,110). The inability
of SIgA to activate complement by the classic
pathway is likely involved in maintaining the
integrity of mucosal surfaces (63); therefore,
SIgA may be preferable to IgG or IgM for many
mucosal applications.

The FDA “Points to Consider” for character-
ization of antibodies produced in cell-culture and
transgenic animals (111) are better defined than
for characterization of antibodies produced in
transgenic plants; however, plant-derived anti-
bodies are free of animal viruses and may
therefore not require rigorous viral inactivation
processing steps. In addition, although
glycosylation patterns of MAbs produced in
mammalian cell-culture and transgenic animals
are closer phylogenetically to humans than
glycosylation patterns in plants, given our
repeated exposure to plant sugars in food and
personal care products, it is unlikely that any of
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these patterns are novel to human immune
systems (112). In fact, in a recently completed
clinical trial with repeated applications of plant-
produced antibody for the prevention of oral
colonization by S. mutans, no safety problems
were encountered, nor were there any detectable
human anti-plant antibody responses (113).

Selection for resistant organisms by wide-
spread and repeated use of antibiotics is a serious
health concern (60). Drug-resistant strains of a
wide variety of pathogens have already been
reported (Table 1). Antibiotic or antiviral
treatment of infected persons in which
pathogens are actively replicating provides a
strong evolutionary selection process for devel-
oping drug-resistant pathogens. In contrast,
MAbs are less likely to create resistant
organisms when used in a preventive context at
a mucosal surface against a pathogen that is not
yet actively replicating. Even if a systemic
infection does occur during topical use of MAbs,
resistant organisms will likely not be created
since the pathogen will not be replicating and
evolving in the presence of the mAb applied to
the mucosal surface. This is in marked contrast
to the settings in which antibiotics and antiviral
drugs select for resistant strains (60). If MAbs
are used frequently on a population level, the
risk of selecting for resistant organisms may
increase. When the emergence of resistant
strains is of particular concern, the tendency to
select mAb-resistant organisms could be mini-
mized by using cocktails of mucosal antibodies
directed at multiple antigenic targets (2,114).
Because new MAbs can be produced with a rapid
turnaround time (discussed below), the emer-
gence of an antibody-resistant strain could be
countered by producing a new mAb directed
toward the mutated epitope or another antigenic
target of the resistant strain. Indeed, the
flexibility of the antibody structure to create a
virtually inexhaustible repertoire of antigen
binding specificities suggests that immunoglobu-
lins evolved in part as a means to cope rapidly
with new pathogens.

Turnaround Time for Developing a New mAb
Since human MAbs can be identified quickly
by cloning variable regions from specific antigen-
binding human lymphocytes (115) or panning
combinatorial libraries (87), antibodies could be
used as a rapidly developed method for defending
against new pathogens. The time required for
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collecting lymphocytes from a seropositive
person, screening for an appropriate antibody,
cloning, and expressing the antibody in culture
in a well-equipped laboratory is 1 to 3 months;
quantities sufficient for protecting persons at
high risk or those at the focal point of an
outbreak could be available in fewer than 6
months. High-capacity production in quantities
sufficient for broad public health application
could be available in several years, assuming
that the safety of antibodies as a class of
molecules is established and an infrastructure is
in place for producing these antibodies. While in
rare instances vaccines can be developed this
quickly (e.g., the 1976 influenza vaccine [5]), new
vaccines, antibiotics, and antiviral therapies
usually take considerably longer to develop.
Moreover, even though passive immunization
may require repeated applications, MAbs
delivered to a mucosal surface can provide
immediate protection against infection.

Potential Preventive Uses for Topically
Delivered MAbs

From a public health perspective, MAbs are
most promising for preventing gastrointestinal,
respiratory, and reproductive tract infections.
These infections cause almost 11 million deaths
annually worldwide, accounting for more than
50% of the deaths caused by communicable
diseases and 22% of deaths by all causes (116).
Sexually transmitted diseases (STDs) accounted
for 87% of all cases reported among the top ten
most frequently reported diseases in 1995 in the
United States; more than 12 million Americans
are infected with STDs each year at an estimated
annual cost of more than $12 billion (117).

If a track record of safety and efficacy can be
achieved, mucosal antibodies will probably be
most useful as over-the-counter products that
could reach populations not well integrated into
the health-care system. The condom, a
nonmedical over-the-counter personal protec-
tion product, has played an important preventive
role in the HIV epidemic. Personal protection
provided by over-the-counter antibody-based
technology could play a similar role in future
emerging disease epidemics.

Diarrheal Disease

Studies in animal models have demonstrated
that orally delivered antibodies were 100%
effective in preventing rotavirus (70) and cholera
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(79) infections. In humans, orally delivered
bovine antibodies were 100% effective in
preventing rotavirus (118), enterogenic E. coli
(74), Shigella infection (76), and necrotizing
enterocolitis (119).

For orally delivered MAbs, digestive degra-
dation is a potential concern. However,
significant levels of functional antibody survive
treatment with pepsin at pH 2 or with a pool of
pancreatic enzymes at pH 7.5 in vitro (120). In
addition, most ingested IgA in milk survives
passage through the gastrointestinal tract of
infants (121); intact antibody delivered orally
with an antacid survived passage through the
gastrointestinal tract of adults (74,76). Assum-
ing that a 10-mg dose of antibody is protective
(i.e., assuming that the mAb is only 100-fold
more potent than polyclonal preparations [118]),
the production costs for the amount of plantibody
needed for 100 days of protection could be
approximately one cent (102).

Since diarrheal diseases are most prevalent
in developing countries, preventive strategies
must be extremely inexpensive; therefore, MAbs
produced in plants or in the milk of animals are
likely most suitable for these countries. Because
of the speed with which MAbs pass through the
gastrointestinal tract, antibodies delivered
orally will need to be delivered frequently,
perhaps more than once a day. In endemic-
disease regions, MAbs could be delivered orally
as a supplement with food or water.

Respiratory Disease

Animal studies have demonstrated the
efficacy of nasal delivery of antibodies for the
prevention of RSV infection (71) and influenza
(68). In one study, topical application was
approximately 100 times more effective than
systemic delivery (122). Another study found an
anti-RSV mAb (MEDI-493) to be approximately
100 times more effective than an equal quantity
of a polyclonal preparation (32). These results
suggest that 10,000 times less anti-RSV mAb
would be required for topical applications than
for systemically delivered polyclonal prepara-
tions. Protective systemic doses of MEDI-493 are
approximately 100 mg (15 mg/kg) (32), so <1 mg
might suffice for protection if this mAb were
applied topically. Intranasally applied mAb has a
residence half-time of a little under one day in
the monkey (71), suggesting that once-a-day
applications that deliver several-fold more than
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a protective dose can provide -continuous
protection. MAbs for protecting the respiratory
tract could be delivered in nose drops or by
aerosol once a day to those at particular risk
(e.g., infants and the elderly during influenza
season) or to everyone living near the
epicenter of an epidemic.

STDs

With the exception of hepatitis B, no vaccines
are available for the prevention of STDs (Table
3). Until effective and safe vaccines are
developed, vaginal delivery of a cocktail of anti-
STD pathogen MAbs might make an effective
new method for broad spectrum protection
against STDs (11). In animal models, MAbs have
been shown to protect against transmission of
C. albicans, C. trachomatis, HSV, HIV, and
syphilis (Tables 1, 2) (11). Antibodies have been
delivered experimentally to the vagina in
solution, gels, and more recently, by sustained
release devices for long-term delivery of
protective MAbs (123,124). Antibodies were
found to be stable when stored in seminal fluid or
cervical mucus for 48 hours at 37°C (125); no
significant inactivation occurred over the pH
range of the human vagina (pH 4 to 7) for at least
24 hours at 37°C (Zeitlin et al., unpub. obs.).
Since the effective half-life of antibodies applied
topically depends on the turnover time of mucus,
a single vaginal application may thus provide
protection for at least 1 day, and probably several
days (97). If so, passive immunization of the
vagina may extend protection to the occasional
days when the user forgets to apply the mAb.
Considering there are an estimated 5 billion acts
of sexual intercourse per year in the United

Table 3: Preventive vaccines or cures for major sexually
transmitted disease pathogens

Pathogen Vaccine Cure DRS?
Chlamydia trachomatis no yes
Haemophilus ducreyi no yes X
Hepatitis B yes no

Herpes simplex 1 and 2 no no X
HIV-1 and 2 no no X
Human papilloma virus (HPV) no yesP
Neisseria gonorrhoeae no yes X
Treponema pallidum no yes
Trichomonas vaginalis no yes X

aDrug-resistant strains reported.
bSurgical removal of HPV-infected tissue is performed. HPV-
related cervical cancer identified early has a high cure rate;
however, in the United States, for every three new cases, there
is approximately one death (117).
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States (11), large-scale production of MAbs in
plants may offer the best system for the low
costs needed for such a public health initiative.
In addition, because the most common class of
infection in the first month of life is primarily
caused by STD pathogens present in the birth
canal (126), the same mucosal antibodies could
be used in a predelivery cervicovaginal lavage
or applied to newborns’ eyes for studies in the
prevention of ophthalmia neonatorum. Indeed,
in some cultures the mother’s colostrum, a
fluid rich in SIgA, is applied to the newborns’
eyes (127).

Conclusions

In animal models and human studies,
antibodies have been shown to prevent a wide
variety of infectious human diseases. Recent
advances allow development of a new era of
mucosal mAb-based products. These advances
include the development of combinatorial
libraries for rapid selection of human MAbs, the
ability to increase dramatically the potency of a
specific mAb, and the marked reduction in the
cost of cell-culture—produced MAbs as well as the
ability to produce MAbs inexpensively and at
high capacity in transgenic animals and plants.
In addition, since MAbs can be developed
considerably more rapidly than most vaccines
and antimicrobial drugs, MAbs may prove useful
for combating emerging pathogens. Mucosal
infections account for a large percentage of
infectious disease-related illness and deaths;
hence topical passive immunization with MAbs
may offer a new opportunity for improving public
health. Finally, many of the remaining safety
issues regarding the human use of mucosal
MAbs are likely to be addressed by clinical
trials now under way.
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